Confidence Interval Standard Deviation Tidak Diketahui
(confidence interval) merupakan metode digunakan untuk memperkirakan parameter populasi berdasarkan sampel menggunakan metode statistik tertentu dalam sebuah rentang tertentu.
Untuk membuat ukuran sampel yang efisien dan tepat, Anda perlu margin of error tertentu sebelum memulai penelitian.
Anda dapat menggunakan rumus ini untuk menentukan ukuran sampel terbaik!
Contoh: Ada 100 juta anak muda di Amerika Serikat. Berdasarkan hasil penelitian, 50 persen dari anak muda tersebut tertarik menjalani pekerjaan sebagai wirausaha.
Jika ingin memiliki interval kepercayaan yang sempit, berapa banyak sampel yang tepat yang kami butuhkan?
Jawab: Jika Anda ingin menggunakan 200 sampel, maka Anda akan menemukan:
Ini berarti margin of error adalah 0,07 atau 7 persen. Kita harus menambahakan dan mengurangi nilai statistik uji yang dihasilkan dengan 0,07.
Contoh, bila hasil dari survei menyimpulkan bahwa 50 persen dari anak muda tersebut menyatakan ingin berprofesi sebagai wirausaha, maka perkiraan jumlah dari anak muda yang menyatakan keinginan tersebut sekitar 43-57 persen.
Nilai ini cukup besar sebagai toleransi kesalahan.
Sekarang, bagaimana jika menggunakan 2000 sampel?
Ini berarti margin of error adalah 0,02 atau 2 persen. Kita harus menambah atau mengurangi nilai statistik dengan 0,02.
Dengan kasus yang sama, dengan rata-rata 50 persen, kita bisa menyimpulkan bahwa perkiraan rata-rata anak muda yang ingin berprofesi sebagai wirausaha adalah sebesar 48-52 persen.
Rentang interval tersebut lebih kecil sehingga kemungkinan akan lebih valid dengan penambahan jumlah sampel.
Ingat, confidence interval ini akan memberikan akurasi yang lebih baik ketika ukuran populasi semakin besar.
Margin of error sering juga disebut sebagai batas kesalahan atau galat error.
Tentu saja, meningkatkan jumlah sampel akan memiliki efek positif dari estimasi Anda.
Tapi, jangan lupa, sampel tinggi berarti biaya tinggi, banyak waktu, dan lebih banyak kekuatan untuk mempersiapkan.
Pilih tingkat kepercayaan terbaik yang sesuai dengan kondisi Anda sehingga Anda tidak akan kehabisan tenaga.
Satu lagi, ada hal yang disebut dengan non sampling error. Ini berarti, semakin banyak sampel yang Anda miliki, akan semakin kesalahan lain yang berasal dari luar metodologi.
Ada kemungkinan kesalahan tersebut muncul dalam proses pengumpulan datas.
Pilihlah dengan bijak. Saya pikir 10 persen sudah cukup baik untuk margin kesalahan terkecil.
Bagaimana menurut anda?
Variabilitas (standar deviasi) juga mengambil bagian dalam ukuran sampel. Lihat rumus di bawah ini:
Berdasarkan rumus di atas, standar error memiliki pengaruh terhadap variabilitas.
Bila anda melakukan pengujian statistik rata-rata, maka anda bisa menggunakan statistik tersebut dalam bentul selang kepercayaan.
Berikut formula yang digunakan:
Jika sampel terlalu kecil (kurang dari 30 ). Kita harus menggunakan distribusi-t dengan derajat kebebasan n-1.
Contoh:
Misalkan anda sedang melakukan survei pendapatan rumah tangga untuk 10.000 responden. Salah satu indikator hasil adalah tingkat kemiskinan.
Berdasarkan hasil penelitian, anda menemukan bahwa terdapat 3000 orang miski. Asumsikan standar deviasi adalah 500. Dengan tingkat kepercayaan 95 persen, buatlah selang kepercayaan dari rata-rata tersebut!
Kesimpulan: Dengan tingkat kepercayaan 95 persen, tingkat kemiskinan di kota ini sekitar 2901 hingga 3009 orang.
Selang kepercayaan untuk proporsi populasi bertujuan untuk menghasilkan selang kepercayaandalam menduga statistik uji yang dihasilkan yang berbentuk proporsi.
Berikut formula selang kepercayaan untuk proporsi populasi:
Selang kepercayaan untuk proporsi sering digunakan dalam jenis data kategori.
Contoh data kategori adalah opini, preferensi, kebiasaan, dll.
Biasanya, peneliti memperkirakannya dengan membuat proporsi berdasarkan karakteristik atau kriteria tertentu.
Contoh, persentase orang yang suka pedas atau tidak, proporsi pekerja pagi, dan banyak lainnya.
Dengan selang kepercayaan, seorang peneliti bisa memperkirakan proporsi populasi menggunakan proporsi sampel dan sesuai dengan margin of error.
Contoh: misalkan anda ingin memperkirakan persentase pelanggan yang suka mie rasa pedas. Katakanlah, kita ingin interval kepercayaan 95 persen.
Anda memiliki 100 sampel acak sebagai responden dari survei kepuasan pelanggan. Ada 44 pelanggan yang suka mie pedas.
Tentukan interval kepercayaan proporsi pelanggan yang suka mie pedas!
Jawaban:
Kesimpulan: Dengan tingkat kepercayaan 95 persen, persentase pelanggan yang menyukai mie pedas adalah sekitar 0,39 hingga 0,49 persen.
Selang kepercayaan untuk perbedaan dua rata-rata populasi bertujuan untuk membandingkan dua populasi yang berbeda.
Contohnya, kita dapat membandingkan antara pria dan wanita, pengusaha dan karyawan, dan lainnya.
Dalam memperkirakan perbedaan antara dua rata-rata populasi, seorang peneliti mengambil sampel dari setiap populasi dan menggunakan perbedaan rata-rata dari dua sampel tersebut, lalu kurangi atau tambahkan dengan margin of error.
Hasilnya adalah interval kepercayaan untuk perbedaan rata-rata dua populasi.
Contoh: kita akan membandingkan berat badan anak yang minum susu secara teratur dengan anak yang tidak pernah minum susu.
Berdasarkan 100 sampel, anak-anak yang minum susu secara teratur memiliki berat badan rata-rata 52kg dengan standar deviasi populasi 4kg.
Sementara itu, berdasarkan sampel 120 anak yang tidak pernah minum susu, berat badan rata-rata adalah 47kg dengan standar deviasi 3kg.
Dengan tingkat kepercayaan 95 persen, berapa nilai interval kepercayaan antara anak-anak yang minum susu secara teratur dan anak-anak yang tidak pernah minum susu?
Jawab:
Kesimpulan: Dengan tingkat kepercayaan 95 persen, perbedaan berat anak yang minum susu secara teratur dengan anak yang tidak pernah minum susu adalah sekitar 9,32 kg hingga 10,28 kg.
Selang kepercayaan untuk perbedaan dua proporsi bertujuan untuk membandingkan dua proporsi pupulasi dari statistik uji (seperti membandingkan pria dengan wanita mengenai pendapat tentang pemilihan presiden) dan memperkirakan perbedaan antara dua proporsi tersebut.
Anda bisa melakukan ini dengan mengambil perbedaan dalam proporsi setiap sampel dari populasi, lalu menambahkan dan mengunranginya dengan margin of error.
Hasilnya adalah interval kepercayaan untuk perbedaan dua proporsi populasi.
Contoh: Misalkan dari 120 sampel, ada 0,4 persen wanita yang suka matematika. Juga, dengan 150 sampel, ada 0,3 pria yang suka matematika. Dengan tingkat kepercayaan 95 persen, temukan interval kepercayaan untuk perbedaan dua proporsi!
Kesimpulan: Dengan tingkat kepercayaan 95 persen, perbedaan proporsi antara pria yang menyukai matematika dan wanita yang menyukai matematika adalah sekitar 1,90 persen hingga 2,02 persen.
nama : rifqi maulana batriandi
npm : 19316087
Komentar
Posting Komentar